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Voronov et al. and Voronov and Grigorev reported their data 
to 100 kbar, but we changed their pressure calibration [Voro­
nov and Grigorev. 1969) from 89.3,27.2, and 58.5 to 74, 25, and 
55 kbar for the upper and lower bismuth and barium transi­
tions, respectively. There are no previously reported values for 
velocities beyond 100 kbar. 

Comparison With Theory 

Attempts have been made, by using continuum mechanics , 
to calculate isotropic velocities to high pressures. A well­
known velocity-pressure relation is the linear formula of Birch 
[1938, 1939). based on his Eulerian finite strain theory and the 
work of Murnaghan [1937). A similar relation is the formula of 
Tang [1966). based on the nonlinear elasticity theory of Bolotin 
[1963). These authors do not claim validity above 10 kbar, and 
indeed a comparison of these formulae with the data in Figure 
3 shows that while these formulae were useful to pressures of a 
few kilobars, neither these nor any other linear velocity-pres­
sure relations are adequate at pressures much above 10 kbar. 

For cubic crystals, equations for the elastic constants based 
on interatomic forces [Anderson. 1970; Anderson and Dema­
rest. 197 I; Del/wrest. I 972a. b) and on fourth -order finite 
strain theory [Thomsen. 1972) are available. 

The elastic constants for single crystals (ClI' C12, c .. or Bs, CB, 

c .. ) were formulated as a function of pressure at zero temper­
ature [Anderson. 1970). The differences between adiabatic and 
isothermal elastic constants were not taken into account by 
A nderson because of the approximate nature of the formula­
tion. TheTesults of the elastic constants formulae can still be 
compared with the measured velocities by noting that [Barsch. 
1967) 

CI / - ells = CI2
T - c l •

S = BT - Bs (9a) 

c./ = c .. s = c.. (9b) 

The two adiabatic shear moduli (c11
S - C125)/ 2 and c./ are 

equal to the isothermal moduli (cuT - C12T) / 2 and c./, respec­
tively. It is necessary only to choose the bulk modulus B 
properly. The transformation from single-crystal to poly­
crystalline elastic parameters is done in a standard manner 
[Anderson and Demarest. 1971) . 

The interatomic force model using only nearest neighbor 
(NN) terms adopts the assumption that c .. goes to zero at the 
NaCI phase transition . If the elastic parameters and their 
derivatives at zero pressure are the only input data for the 
model, the model falls seriously in error [Anderson and Dema­
rest. 1971). Anderson [1970) has suggested that the knowledge 
of the phase transition be used to calculate an effective value 
for the atomic screening parameter a in the NN model. Ac­
cording to this suggestion, 

Bs./a = (5PT / 2)(Po/ PT), /3 = 410.5 kbar (10) 

where the subscripts 0 and T denote evaluation at zero pres­
sure and the transition . The parameter a is used in the NN 
model by assuming it to be independent of pressure. 

The isotropic acoustic velocities can be calculated from the 
bulk modulus and the rigidity modulus Jl: 

VB = (Jl / P )1 / ' (II) 

The NN model gives values for the elastic parameters CB and 
c .. which are used to estimate the rigidity modulus . An upper 
and a lower bound, known as the Voigt and the Reuss limit, 
respectively, for the rigidity modulus are 

Jlv = (1 / 5)(2cs + 3c .. ) JlR = (lOcBc .. )/ (4c •• + 6cB ) (12) 

The rigidity modulus can be estimated either by the arithmetic 
mean of the above limits, as was suggested by Hill [1952), or 
by the geometric mean , as was suggested by Kumazawa [1969). 
The acoustic velocities predicted by the NN model by using 
both estimates of the rigidity modulus are shown in Figure 4 
together with the data. At low pressure the two estimates' yield 
almost identical results. At pressures near the transition, as the 
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Fig. 4. Acollstic velocities (longitudinal and shear) at static pressures to 270 kbar. The measured values Vp and v, are 
shown together with the predicted values of Anderson and Demarest [1971] with both the arithmetic average for the rigidity 
modulus [Hill, 1952], indicated by a superscript H, and the geometric average for the rigidity modulus [Kumazawa. 1969]. 
indicated by a superscript K. 
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predicted c •• goes to zero, the predicted value of f.L decreases 
either to a small positive value or to zero . 

The comparison of the measured acoustic velocities to the 
prediction of Anderson and Demarest [1971] is good up to 
approximately 130 kbar. At higher pressures the predicted 
acoustic velocities are less than the measured ones. Thomsen 
[1972] concluded tentatively that c •• goes to zero at the NaCl 
phase transition , predicting velocities smaller than those mea­
sured. However, Ahrens and Thomsen [1972) concluded later 
that the formulation was not accurate above 200 kbar. 

The isotropic shear velocity, which depends on both c. and 
c •• , does not decrease with increasing pressure. Since c. has a 
positive pressure dependence [Anderson, 1975), c .. cannot have 
a significantly greater negative pressure gradient up to 270 
kbar. Also, measurements on a NaCl specimen through the 
phase transition did not indicate a drop in the shear velocity 
near the transition . 

Demarest [1972a, b) has developed a next nearest neighbor 
(NNN) model which does not assume that c .. is zero at the 
NaCI transition. He has predicted that c •• / B should decrease 
to approximately 0.17 at the NaCl transition. The rigidity 
modulus predicted from the values of c •• given by Demarest 
[1972a) is 25-40% larger than the measured value of329 kbar 
at 270 kbar of pressure . 

Ratio of the NaCI Velocities as a 
Pressure Calibration Parameter 

With any ultrahigh-pressure experiment, calibrating the sys­
tem is the first priority. Two methods have been traditionally 
used : the measurement of resistance transitions as described 
above and the X ray measurement of the lattice spacing of 
NaCl [Decker et aI., 1972). A new method proposed by 
Piermarini and Block [1975) is the observation of the pressure­
induced shift in the ruby fluorescence line. However, neither 
the ruby fluorescence method nor the X ray method can be 
used with the present ultrahigh-pressure cell and many other 
cells because of the requirement for an optical window. 

I t is proposed that the measurement of the ratio of the 
longitudinal to isotropic shear velocity for a material such as 
NaCI be considered as a para meter for determining the pres­
sure. The ratio , which can be expressed as 

is a monotonic function with respect to pressure from zero to 
292 kbar. Use of the ratio will allow for continuous calibration 
of a pressure device up to the N aCI phase transition without 
the presence of an optical window. Use of the ratio also 
eliminates the need to know the specimen thickness or acoustic 
path length in order to interpret the acoustic measurements. 

Use of (13) requires that the values of the ratio of various 
pressures be well determined. Values from the present mea­
surements and those of Voronov are given in Table 2 and can 
be used to determine the pressure from measurements of the 
ratio (13). However , the present data were obtained with the 
aid of a resistometric pressure calibration, which causes an 
uncertainty to be associated with the pressures given in Table 
2. The best determination of the ratio would be simultaneous 
X ray and ultrasonic measurement of NaCI. Alternatively, the 
ratio of the acoustic velocities can be determined from theoret­
ical formulations, but theoretical predictions at ultrahigh pres­
sures are presently too unreliable to be quantitatively useful. 

CONCLUSIONS 

The general concept that c .. goes to zero near high-pressure­
induced phase transitions in ionic-cubic materials cannot be 

TABLE 2. Ratio of Longitudinal to Shear Velocity in 
Polycrystalline NaCI 

vp/ v, 

Pressure, This Anderson A nderson and 
kbar Paper Voronov and Hill Kumazawa 

25 1.869 1.874 1.816 1.8 16 
30 1.887 1.889 1.833 1.833 
35 1.906 1.905 1.850 1.850 
40 1.917 1.922 1.866 1.867 
45 1.943 1.937 1.883 1.884 
50 1.956 1.955 1.899 1.901 
55 1.969 1.972 1.916 1.917 
60 1.981 1.986 1.932 1.935 
65 1.992 1.998 1.948 1.952 
70 2.003 2.007 1.964 1.969 

75 2.014 2.012 1.980 1.987 
80 2.025 2.012 1.996 2.005 
90 2.050 2.027 2.040 

100 2.068 2.058 2.078 
110 2.084 2.089 2.115 
120 2.099 2.121 2.154 
130 2.114 2.151 2.196 
150 2.136 2.212 2.284 
170 2.161 2.273 2.385 
190 2.201 2.335 2.505 

210 2.239 2.398 2.652 
230 2.259 2.461 2.846 
250 2.279 2.525 3.132 
270 2.304 2.590 3.658 

supported by results of the present experiment. The pressure 
dependence of the shear velocity of NaCI shows that c •• can 
only have a significantly negative pressure gradient up to 270 
kbar if Cs has a balancing positive pressure gradient. The 
Demarest NNN models seem to come closest to the present 
results and should consequently be considered when predic­
tion of acoustic velocities of materials under pressures of sev­
eral tens or hundreds of kilobars which occur in the lower 
mantle of the earth are made. This is especially true near 
pressures where phase transitions occur. 
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